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Help Topics for 
Exploratory Enzyme Kinetics 

Dick Mitchell, SYSTAT, Inc. 
 

 
 
Installation 
 
See the Macro Installation.doc document. 
 
Data Entry 
 
The Exploratory EK macro is designed to work in conjunction with the Enzyme Kinetics Module or 
with data entered into a SigmaPlot worksheet. 
 
Use with the Enzyme Kinetics Module 
 
Open the worksheet that the EK Module created after you entered your data.  The EK Module 
type of study must be Single Substrate – Single Inhibitor.  Then run the Exploratory EK macro.  It 
will recognize that this worksheet was created by the EK Module and will use the adjusted data in 
the worksheet.  The adjusted data will be the same as the raw data that you entered if you have 
not entered an equation(s) to adjust it. 
 
Entering Data into a SigmaPlot Worksheet 
 
Data is entered in S, I, multiple-replicate-velocity format where S is a column of substrate values, 
I is a column of inhibitor values and multiple-replicate-velocity are groups of columns containing 
replicate velocity values.  Each group contains the same number of columns for replicates.  
Replicates are entered rowwise.  For example, the worksheet in Figure 1 shows substrate and 
inhibitor values in columns 1 and 2, respectively.  There are 5 groups of replicate velocity values 
(only two are shown) corresponding to the 5 inhibitor values.  Each group contains 3 columns of 
replicates.  There are two replicate values and a missing value in the first row of the first replicate 
velocity group corresponding to S = 0.5 and I = 1.0. 
 

 
 

Figure 1.  Data format in the SigmaPlot worksheet.  Only two of the five replicate velocity 
groups are shown. 

 
The data must be left-adjusted in the worksheet with substrate values in column 1.  This is the 
same format used for data entry by the EK Module. 
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Using the Macro 
 
Starting the macro produces the dialog  
 

 
 
Enter the number of replicates if you have entered your data directly into a SigmaPlot worksheet.  
The number-of-replicates control will not be available if you are analyzing an Enzyme Kinetics 
Module worksheet.  The macro obtains the number of replicates from this worksheet.  
 
You can control the content of the direct plot.  The most useful option is to show both the 
intersections and the medians – Figure 2A.  Selecting the lines option is useful for tutorial 
purposes but for realistic data produces a cluttered graph which decreases your ability to 
visualize the intersection and median values – compare the direct linear plot in Figure 3A which 
contains the intersection lines with the graphs in Figure 2. 
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Figure 2. The direct linear plot with Medians and Intersections selected (A) and Medians only 
selected (B). 

 
The median symbols are associated with increasing inhibitor concentration by symbol type and 
color.  The SigmaPlot “doubles” scheme is used in conjunction with two colors.  The symbol type 
cycle {circle, down-triangle, square, diamond, up-triangle, hexagon} is used with red and light red 
colors.  Therefore, increasing inhibitor concentration is identified with the sequence {red circle, 
light-red circle, red triangle-down, light-red triangle-down, …}. 
 
 
Exploratory EK Results 
 
The macro produces two graph pages and a numerical report.  The first graph page contains two 
graphs – the direct linear plot and the Michaelis-Menten (v vs S for fixed I) plot.  These two 
graphs allow examination of the raw data to understand the origin of second and third quadrant 
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data points in the direct linear plot.  An example of the first graph page for simulated competitive 
inhibition data is shown in Figure 3A.  
 
The second page contains the two secondary plots (apparent Km/Vmax vs I and apparent 
1/Vmax vs I) derived from apparent Km and Vmax median values (red and light-red symbols) 
computed for the direct linear plot.  These are shown in Figure 3B. The secondary plots are 
useful for determining the type of linear inhibition and obtaining estimates for the inhibition 
dissociation constants. 
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Figure 3.  The two pages produced by the Exploratory EK macro.  The first page with 
simulated competitive inhibition data is shown in A.  The secondary plots on the second page 
are shown in B. 

 
The numerical report is placed into a worksheet.  Figure 4 shows the results for the data in Figure 
3.  The report contains median values for apparent Km and apparent Vmax and derived values 
used in the secondary plots.  The total number of line intersections and the number in the third 
quadrant are also displayed.  The intersections with the x-axis (inhibitor) by the secondary plot 
linear regression lines are used to obtain the inhibitor dissociation constants.  The estimate for 
Kiu in Figure 4 is a large negative value since the regression line slope is slightly negative (but for 
practical purposes is zero for which Kiu is then infinite). 
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Figure 4. The exploratory EK report results. 
 
 
The Direct Linear Plot 
 
The direct linear plot is the basis of the Exploratory EK macro.  It is described in the text by 
Cornish-Bowden (1) and in his and Eisenthal’s papers (2-4).  It is an excellent first-step for enzyme 
kinetics analysis since it examines the validity of the Michaelis-Menten assumption.  It also gives 
useful information about the type of linear inhibition involved and, from secondary plots, 
generates inhibition dissociation constants. 
 
The direct linear plot is different from the usual enzyme kinetics plots since it considers the 
parameters Vmax and Km to be variables and graphs Vmax vs Km.  Enzyme kinetics graphs 
typically graph combinations of velocity v and substrate S against one another.  The direct linear 
plot is derived by first assuming that Michaelis-Menten kinetics are applicable 
 

SK
SV

v
m

max

+
=           (1) 

 
and then rewriting this in terms of Vmax and Km as  
 

mmax K
S
vvV +=          (2) 

 
For fixed values of v and S this is a straight line.  The y-intercept (Km = 0) for this line is Vmax = v 
and the x-intercept (Vmax = 0) is Km = -S.  Two pairs of (S,v) data values generate two straight 
lines which intersect as shown in the Vmax-Km graph in Figure 5A.  The intersection defines the 
parameter values Vmax* and Km* that generated the two (S,v) data pairs.  If you have more than 
two (S,v) pairs and these are error free, generated by Equation (1) say, then these lines will also 
intersect in a point as shown in Figure 5B.   
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Figure 5. The direct linear plot is a graph of straight lines defined by (S,v) data pairs on a 
Vmax, Km coordinate system.  The intersection of the lines defines the Vmax* and Km* 
parameter values which generated the (S,v) data. 

 
Actual data will not be error free and so will not intersect at a point.  A typical example is shown in 
Figure 6. The intersections are scattered around the true Vmax and Km values of 100 and 10, 
respectively.  
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Figure 6.  The direct linear plot for (S,v) data with error.  The inset shows the ten line 
intersections that occur with five lines. 

 
There will be n(n-1)/2 line intersections for n lines.  Using the medians of the line intersection x-
coordinates and y-coordinates as estimates for Km and Vmax, respectively, has been found to 
work well.   
 
For positive S and v values the line intersections can occur in the first, second and third 
quadrants.  Error-free Michaelis-Menten kinetics will result in intersections in the first quadrant.  
Intersections in the second and third quadrants can result from 1) random error in the data or 2) 
an enzymatic reaction which does not follow the Michaelis-Menten assumption.  A second 
quadrant intersection results from two (S,v) data points at large S for which the velocity for the 
largest S is less than the other velocity.  This can result from substrate inhibition where the 
velocity decreases for large S or from random error.  A third quadrant intersection results from 
two (S,v) data points at small S for which the velocity for the smallest S is “too small” relative to 
the other velocity.  “Too small” means with respect to the hyperbolic (S,v) shape for Michaelis-
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Menten kinetics.  This can occur for an allosteric enzyme with a sigmoidal (S,v) shape or from 
data error. 
 
Computational Details 
 
Replicates 
 
Replicate velocity measurements are commonly made for each substrate concentration.  Two 
different substrate concentrations are required for two direct-linear lines to intersect at a non-zero 
Vmax value (Figure 5A).  Therefore, replicate velocity values for a given substrate value provide 
no additional information for the corresponding direct-linear line.  The Exploratory EK macro uses 
the mean of velocity replicates for each substrate value. 
 
Third Quadrant Intersections 
 
Cornish-Bowden and Eisenthal(4) have shown that underestimates of Vmaxapp and Kmapp occur if 
third quadrant intersections are included in the computation of the medians.  They also showed 
that the median computation method produces correct results if third quadrant intersections are 
considered to be first quadrant intersections at infinity.  The Exploratory EK macro computes 
medians in this way with one modification.  If the number of third quadrant intersections exceeds 
half the total (which would result in an infinite median value) then the maximum first quadrant 
Vmaxapp (or Kmapp) value is used as the ‘median’.  
 
Linear Inhibition Examples 
 
The Direct Linear Plot 
 
A direct linear plot with one (Kmapp, Vmaxapp) median symbol, similar to the one shown in Figure 
6, is obtained for each inhibitor concentration.  Multiple inhibitor values result in multiple plots like 
that shown in Figure 6 superimposed in one graph.  Examining the trajectory of the medians in 
the direct linear plot as the inhibitor concentration is increased gives information about the type of 
linear inhibition.  In general, the relationship between inhibition type and the trajectory is 
 

Inhibition Type Trajectory 
Competitive Horizontal to the right 
Mixed Diagonal down and to the right 
Noncompetitive Vertically down 
Uncompetitive  Toward the origin 
 

Table 1.  Direct linear plot median trajectory behavior. 
 
Data was created by computer simulation for the four inhibition types to show realistic examples 
of direct linear plots – Figure 7.  This figure gives you an idea of the amount of scatter that occurs 
for the intersections.  It also shows the variability of the median values about the trajectory 
description in Table 1.   
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Figure 7. Median trajectories for different linear inhibition types.  A - competitive inhibition, B – 
mixed inhibition, C – noncompetitive inhibition, D – uncompetitive inhibition. The second 
quadrant intersection in D results from data error.  Increasing inhibitor concentrations are 
indicated by the median symbol type and color – red circle, light red circle, red triangle-down, 
light red triangle-down, red square and light red square.  Simulated data: Vmax = 100, Km = 
10, Ki = 5, 5% constant percentage data error. 

 
The reason for the direction of the median trajectories can be understood by deriving the 
apparent Vmax and Km variables from the equation for mixed inhibition 
 

)K/I1(S)K/I1(K
SV

v
iuicm

max

+++
=        (3) 

 
Kic and Kiu are the EI and ESI dissociation constants (Cornish-Bowden notation (1)).  The 
Enzyme Kinetics Module uses the notation 
 
Ki = Kic 
αKi = Kiu. 
 
Apparent Km and Vmax parameters can be derived from equation (3) for the various inhibition 
types by letting Kiu and Kic approach infinity and then comparing (3) with the Michaelis-Menten 
equation (1).  Consider two examples.  For competitive inhibition, let Kiu be infinite (the inhibitor 
has zero affinity for the ES complex) to give Kmapp = Km(1 + I/Kic) and Vmaxapp = Vmax.  For 
noncompetitive inhibition, let Kic = Kiu which gives Kmapp = Km and Vmaxapp = Vmax/(1 + I/Kic).  
The results for all cases are shown in Table 2.  



 8

 
Linear Inhibition 

Type 
Vmaxapp Vmaxapp/Kmapp Kmapp 

Competitive 
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Noncompetitive 

iu
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V
+

 
ic
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K/I1
K/V

+
 mK  

Uncompetitive 

iu

max

K/I1
V
+

 mmax K/V  

iu

m

K/I1
K

+
 

 
Table 2. Apparent Vmax and Km relationship with inhibitor concentration I.  

 
In Figure 7 the competitive inhibition median trajectory is horizontal since from Table 2 the 
apparent Vmax is constant and the apparent Km increases linearly with I.  Similarly, for 
uncompetitive inhibition the median trajectory approaches the origin of the direct linear plot along 
a straight line since both apparent Vmax and Km approach zero proportionally as I increases to 
infinity. 
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Secondary Plots 
 
The secondary plots can be used to determine the type of inhibition and to obtain estimates of the 
inhibition dissociation constants.  This is demonstrated below using the same examples shown in 
Figure 7 and comparison with the “apparent” variables in Table 2.  
 
Competitive Inhibition 
 
The secondary plots for the median values shown in Figure 7A for competitive inhibition are 
shown in Figure 8.  The macro performs a linear regression on the median data in both plots. 
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Figure 8.  Secondary plots for competitive inhibition.   

 
From Table 2 the y-axis variable for the secondary plot in Figure 8A is 
 

)Kic/I1)(
maxV

Km(maxV/Km appapp +=       (4) 

 
which increases linearly with inhibitor concentration and has an x-axis intercept equal to –Kic.  
The Kic estimate shown in Figure 8A is quite close to the actual value used in the simulation, Kic 
= 5.0.  The slope of the line in Figure 8B is nearly zero as it should be for competitive inhibition 
where from Table 2, 1/Vmaxapp = 1/Vmax. 
 
Mixed Inhibition 
 
The secondary plots for mixed inhibition shown in Figure 7B are shown in Figure 9.   
 



 10

[Inhibitor]

10 -5 0 5 10 15 20 25

K
m

ap
p/

V
m

ax
ap

p

0.1

0.2

0.3

0.4

0.5

0.6A

[Inhibitor]

15 -10 -5 0 5 10 15 20 25

1/
V

m
ax

ap
p

0.005

0.010

0.015

0.020

0.025

0.030B

 
Figure 9.  Secondary plots for mixed inhibition.   

 
From Table 2 the mixed inhibition x-axis intercepts for the secondary plots are –Kic and –Kiu, 
respectively (the inverse of the relationships shown in columns 2 and 3 of that table are used for 
1/Vmaxapp and Kmapp/Vmaxapp, respectively).  The intercepts in Figure 9 are quite close to the 
values Kic = 5.0 and Kiu = 12.5 used in the simulation. 
 
Noncompetitive Inhibition 
 
The secondary plots for the noncompetitive inhibition results shown in Figure 7C are shown in 
Figure 10. 
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Figure 10.  Secondary plots for noncompetitive inhibition. 

 
Noncompetitive inhibition is the special case of mixed inhibition where Kic = Kiu.  Table 2 shows 
that the x-axis intercepts are = -Kic (= -Kiu).  The intercepts in Figure 10 are close to the Kic = 5.0 
value used in the simulation. 
 
Uncompetitive Inhibition 
 
The secondary plots for the uncompetitive inhibition results shown in Figure 7D are displayed in 
Figure 11. 
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Figure 11.  Secondary plots for uncompetitive inhibition. 

 
Table 2 indicates that the secondary plot in Figure 11A should be a constant equal to 1/Vmax = 
0.01 (the simulation used Vmax = 100).  The y-axis intercept is very nearly this value.  The x-axis 
intercept in Figure 11B is – Kiu which is very nearly equal to the value of 5.0 used in the 
simulation. 
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Other Examples 
 
Substrate Inhibition 
 
Simulated data for substrate inhibition is shown in Figure 12A.  The initial velocities decrease for 
large substrate values.  The second quadrant intersections that result from this are shown in 
Figure 12B. 
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Figure 12.  Second quadrant intersections that occur with substrate inhibition. 

 
 
Multisite System Inhibition 
 
Simulation of ‘pure competitive inhibition, exclusive at both substrate sites’ (5) results in the 
sigmoidal velocity shapes shown near the origin of Figure 13A.  This results in the third quadrant 
intersections shown in B of this figure. 
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Figure 13.  Third quadrant intersections that occur with multisite or allosteric inhibition. 

 
 
Nonlinear Inhibition 
 
The Exploratory EK macro was used on the data shown in the Michaelis-Menten plot in Figure 
14A.  The direct linear plot obtained is shown in Figure 14B.  There were third quadrant 
intersections caused by random error and also intersections in the first quadrant with large Vmax 
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values.  The axis scaling was changed in Figure 14B to exclude these intersections in order to 
better show the median values. 
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Figure 14.  A. Michaelis-Menten plot of raw data.  B.  Direct linear plot for this data.  Third 
quadrant and some first quadrant intersections have been excluded. 

 
The median trajectory appears to be down and to the right suggesting mixed inhibition (Tables 1 
and 2).  The secondary plots are shown in Figure 15. 
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Figure 15.  Secondary plots for the data shown in Figure 14.   

 
A straight line is a poor fit to the apparent Km/Vmax median data. It intersects at a positive 
inhibitor value that corresponds to a negative inhibition constant, which doesn’t make biochemical 
sense.  A quadratic function fits this data very well, R2 = 0.9996, suggesting a nonlinear inhibition.  
The intersection of the straight line fit on the negative inhibitor axis of the apparent 1/Vmax 
secondary plot suggests a mixed inhibition just as the direct linear plot did.  But the median data 
in Figure 15B is much more variable than in Figure 15A and the intersection on the inhibitor axis 
gives a very large Kiu = 1385 μM (notice the difference in the inhibitor axis scales in Figure 15).  
Thus there is some evidence for mixed inhibition but the small slope in Figure 15B may be due to 
random error. 
 
Two nonlinear inhibition equations, competitive and mixed, were created to use the Akaike 
criterion in the Enzyme Kinetics Module to determine which equation fit the data best and if the 
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nonlinear equations fit the data significantly better than the linear inhibition equations.  These 
equations were adapted from Equations 5 and 6 in the paper by Willemoes(6). 
 
Nonlinear Competitive Inhibition 
 

S)KK/IK/I1(K
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2
1im
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Nonlinear Mixed Inhibition 
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The two equations were added to the Single Substrate – Single Inhibitor section of the Enzyme 
Kinetics Module.  All equations in that section were then fit to the data and ranked by the Akaike 
criterion AICc with the results shown in Table 3.  
 
 
Rank by Runs 
 AICc Equation R² AICc Sy.x Test   Converg. 
 1 Competitive (Full) + Quadratic Inhib  0.98533 409.176 4.94401 pass Yes 
 2 Mixed (Full) + Quadratic Inhib 0.98533 411.382 4.96440 pass Yes 
 3 Mixed (Full) 0.96561 516.517 7.56955 fail Yes 
 4 Mixed (Partial) 0.96561 518.722 7.60076 fail Yes 
 5 Competitive (Full) 0.96219 526.290 7.90458 fail Yes 
 6 Competitive (Partial) 0.96219 528.459 7.93691 fail Yes 
 7 Noncompetitive (Full) 0.93181 600.599 10.61557 pass Yes 
 8 Uncompetitive (Full) 0.86878 683.064 14.72522 fail Yes 
 9 Uncompetitive (Partial) 0.86879 685.232 14.78538 fail Yes 
 10 Noncompetitive (Partial)           0.34625      887.574     33.00246     fail              Yes 
 

Table 3.  Comparison of linear and nonlinear equations fit to the data shown in Figure 14A.   
 
The Akaike criterion separates the equations into several groups.  Lower AICc values correspond 
to better fits to the data.  The absolute value of AICc is not important.  It can be positive or 
negative.  It is the difference between AICc values for different equations that determines whether 
one equation provides a better fit than the other.  A very rough rule-of-thumb is that one equation 
provides a better fit to the data over another if its AICc value is 2 units less.  The first group 
containing the two nonlinear equations is separated from the next nearest group by approximately 
100 Akaike units.  Thus the linear equations may be safely removed from further consideration.  
The nonlinear competitive inhibition equation is the primary candidate since its Akaike value is 
greater than two units from the nonlinear mixed inhibition equation.  Thus with the present data 
set, the Enzyme Kinetics Module analysis does not support the qualitative Exploratory EK results 
suggesting a mixed inhibition mechanism.  Two Akaike units is a borderline difference and 
additional data should be collected if it is important to differentiate between these two 
mechanisms. 
 
Partial Inhibition 
 
Partial inhibition is also called hyperbolic inhibition due to the hyperbolic shape of the secondary 
plots.  Apparent Km/Vmax for partial competitive inhibition is described by  
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This function intersects the apparent Km/Vmax y-axis at Km/Vmax and is asymptotic to 
αKm/Vmax for large inhibitor concentrations (see Figure 17A).  The competitive (partial) equation 
from the Enzyme Kinetics Module was used to simulate partial competitive inhibition.  The 
parameters used were Vmax = 100, Km = 10, Ki = 2, α = 10 and 7% constant percentage error.  
The direct linear plot had one third-quadrant intersection that was caused by random error.  To 
show the median values clearly, the graph was rescaled to ignore this intersection and two others 
in the first quadrant with large Vmax values.  The Michaelis-Menten and direct linear plots are 
shown in Figures 16A and B, respectively.  The median trajectory moves horizontally to the right 
reflecting the competitive inhibition. 
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Figure 16. A. The Michaelis-Menten plot for partial competitive inhibition.  B. The direct linear 
plot. 

 
The secondary plots are shown in Figure 17.  A straight line does not fit the apparent Km/Vmax 
data well – Figure 17A.  The SigmaPlot hyperbolic function “Rational, 3 Parameter I” fit this data 
very well (R2 = 0.999).  The partial competitive inhibition parameters can be computed from the 
hyperbolic fit as Ki = 1.85 and α = 10.5 (error-free values are Ki = 2.0 and α = 10.0).  The linear fit 
to the apparent 1/Vmax data in Figure 17B is approximately constant (the Ki estimated from the 
regression line parameters is 1345.) as is expected from this competitive inhibition simulation. 
 



 16

[Inhibitor]

40 -20 0 20 40 60 80 100 120

K
m

ap
p/

V
m

ax
ap

p

0.2

0.4

0.6

0.8

1.0

median data
linear regression
hyperbola, y = (a + bx)/(1 + cx)

A

[Inhibitor]

0 20 40 60 80 100 120

1/
V

m
ax

ap
p

0.000

0.002

0.004

0.006

0.008

0.010

0.012 B

 
Figure 17.  A. The Km/Vmax secondary plot shows the excellent hyperbolic function fit.  B. 
The 1/Vmax secondary plot is nearly constant reflecting the competitive inhibition. 

 
Analysis of the initial velocity data with all equations in the Single Substrate – Single Inhibition 
section of the Enzyme Kinetics Module produced the equation comparison shown in Table 4.  
The table is sorted by the Akaike criterion AICc.  It separates candidate equations into groups (7).   
The competitive (partial) equation has an AICc value 2 units less than the mixed (partial) equation 
and, given this data set, is the best candidate.  Though the 2 unit AICc difference is considered to 
define a difference between equations it is not a large difference, so if determining the 
mechanism type is important then collecting additional data is warranted. 
 
 
 Rank by Runs 
 AICc Equation R² AICc Sy.x Test    Converg. 
 1 Competitive (Partial) 0.98375 204.778 3.00676 pass Yes 
 2 Mixed (Partial) 0.98379 206.845 3.02051 pass Yes 
 3 Noncompetitive (Partial) 0.95465 297.117 5.02213 pass Yes 
 4 Competitive (Full) 0.93093 332.741 6.16233 fail Yes 
 5 Mixed (Full) 0.93093 334.985 6.19806 fail Yes 
 6 Noncompetitive (Full) 0.90242 363.845 7.32470 fail Yes 
 7 Uncompetitive (Full) 0.86781 391.170 8.52549 fail Yes 
 8 Uncompetitive (Partial) 0.86952 392.241 8.51920 fail Yes 
 

Table 4.  Comparison of Enzyme Kinetics Module single substrate – single inhibition equation 
fits to competitive (partial) simulated data. 

 
The excellent fit of the competitive (partial) equation to this data is shown by the Lineweaver-Burk 
plot from the Enzyme Kinetics Module in Figure 18. 
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Figure 18.  Lineweaver-Burk plot of the competitive (partial) equation fit to simulated data.  Good 
inhibition parameter estimates were obtained for the experimentally realistic 7% constant 
percentage error.  
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